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Representational and Computational Properties of Re sonance
Information Encoded in a Standing Wave

We have seen that harmonic resonance is a unique pattern formation principle

that can create a great variety of spatial patterns based on the twin principles of

symmetry and periodicity, and those patterns are automatically sorted, or

organized in an ordered hierarchical array, in which the simpler, more primal

patterns correspond to the lower vibrational energies, while higher harmonics on

those primal basis functions require progressively higher vibrational energies to

sustain them. This is the ultimate origin of the Gestalt principle of prägnanz, the

princple by which the simplest interpretation is the one most likely to be

perceived, the perceptual counterpart to Occam’s razor. In this chapter we

explore those aspects of harmonic resonance that are conducive to exploitation

as a computational and representational mechanism in the brain.  

There are four distinct types of pattern information encoded in a standing wave.

Falstad’s Box Modes applet depicts the standing wave as a spatial field of varying

magnitude and periodically reversing polarity, a sinusoidal type profile in three

dimensions, as shown in Figure 3.1 A, for the same four standing wave patterns

as in Figure 2.7. This corresponds to the function u(x,y,z) in the wave equation

and in Falstad’s Box Modes applet. In a Chladni plate, this corresponds to the

instantaneous shape of the steel plate during vibration, or the degree of deviation

from its central equilibrium configuration. This is the kind of signal that could be

used to define continuous gradient type patterns, for example the continuous

shading observed in the coloration of a Siamese cat, with its lighter belly blending

smoothly with a darker back and extremities. In motor control, the analog

magnitude signal might define the dynamic motor field, or pattern of contraction

and extension of the continuous slab of muscle of a swimming fish or eel, with

analog waves of muscular contraction travelling continuously from head toward

tail, or in static form, the posture of an elephant trunk, swan neck, or snake body,

that is held frozen in a sinusoidal or curved stance.  

A variation on the analog wave function is the analog magnitude of the wave

function, |u(x,y,z)|, shown in Figure 3.1 B, preserving its amplitude but discarding

the polarity information. An approximation to this pattern can be observed in

Falstad’s Box Modes applet by setting the simulation speed so fast that the

pattern flickers rapidly between green and red regions, creating the impression of
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a three-dimensional pattern of yellow (red + green) lobes separated by dark

nodes. This converts the red/green (alternating with green/red) polarized pattern

of the first harmonic waveform, for example, to a twin-hump yellow/yellow pattern

across the zero-amplitude node. This spatial pattern is also encoded in the

standing wave signal where it is readily available for detection through a simple

absolute value function.  

The standing wave also encodes a stark binary pattern in the sign, or polarity of

the standing wave pattern, that is, sign(u(x,y,z)), that evaluates to +1 where

u(x,y,z) is positive, and -1 where it is negative, preserving the phase of the spatial

pattern but ignoring its magnitude. This function can be approximated in Falstad’s

simulation by turning up the brightness control to maximum brightness, as shown

in Figure 2.8 C.This is the kind of signal that would be used to define patterns like

the sharply delineated black and white stripes of a zebra, and in motor control, this

corresponds to the abrupt all-or-nothing type of motion seen in the jerky robotic

bobbing motions of a walking bird, or the jerky movements of our eyeballs as they

dart rapidly between fixations with abrupt starts and stops. This aspect of the

spatial pattern is also readily readable from the standing wave with the use of a

simple polarity or threshold function.  

Finally, the standing wave also encodes a fourth pattern, that is the pattern of

nodes of the standing wave, that is, the lines, surfaces, or vertices across which

the polarity of the wave reverses, as shown by the gray planes in Figure 2.8 D.

The nodal pattern is like an outline drawing that uses thin lines to depict the abrupt

transitions between uniform patches of color in a cartoon. The pattern of nodal

surfaces can also be seen as the eigenfunctions of the pattern, the centers of

symmetry about which the pattern of positive and negative volumes alternates,

the only regions that do not themselves alternate in polarity. The significance of

this nodal representation of pattern will become clear in later chapters. All four of

these patterns are encoded implicitly by the standing wave, where they can be

read out locally at any point in the volume by simple local detectors that can be

replicated throughout the volume of the resonating system, like the units that

translate the chemical standing wave in morphogenesis to patterns of colors in

animal skin, or to volumetric patterns of specific tissue types in the developing

embryo, and like the cells of the cardiac muscle, or the cilia of a paramecium, that

transduce patterns of electrochemical oscillations into mechanical contractions.   
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 Sync Pulse to Read Alternating Signal

The standing wave pattern is actually in continuous oscillation, reversing polarity

with every cycle. A simple local detector somewhere in the volume of the

resonator would thus record an oscillating signal rather than a static pattern. In

order to read out the static pattern represented by the standing wave, the detector

must operate in phase with the oscillating signal so as to read it only in one phase

of the cycle and not the other. This principle is demonstrated for example in the

photographs of Murray's vibrating steel plates, shown in Figure 1.8. The patterns

of light and dark shades in that figure were obtained by constructive and

destructive interference between the light illuminating the vibrating steel plate, and

that reflected back from the plate, which in turn depends on the instantaneous

Figure 3.1. Four kinds of spatial information are present in the standing wave, which can
be read out by simple local sensors distributed throughout the volume of the
representation. A: An analog magnitude and phase. B: The absolute value of the
magnitude, discarding phase. C: A binary polarity signal that discards magnitude but
preserves phase. D: Nodal planes within which the vibration of the standing wave is zero.

A

B

C

D
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pattern of deflection of the plate as it vibrates. Simple viewing with the naked eye

or a simple camera would reveal no pattern at all, due to the rapid reversals of the

light and dark regions of the pattern many times each second. In order to capture

only one phase of the pattern and not the other, as seen in the figure, it is

necessary to either snap the picture in a fraction of a second at the peak of the

oscillation, or, to open and close the shutter in synch with the oscillation of the

pattern in order to integrate light during one half-phase only. More generally, the

standing wave pattern can be read out from a harmonic resonance representation

by local detectors that detect periodically in phase with the oscillation. In other

words, each simple detector distributed throughout the volume of the resonance

representation must have access to two signals: the local oscillating standing

wave signal itself whose waveform represents the signal, and a universal

synchronization signal, or strobe pulse, that acts as a "read enable" signal, to turn

on all the detectors in the volume only when the strobe pulse is in positive phase.

The output of this conjunction, or logical AND between signal and strobe, defines

an enduring static signal of volumes of positive and negative magnitude,

distributed throughout the volume of the resonator as a wave function. While the

standing wave pattern itself varies across the volume of the representation, the

strobe signal is global, turning all the sensors in the volume of the representation

on and off simultaneously in synchrony.  

To take a concrete example in order to sharpen our mental image of this principle,

imagine an array of tiny microphones suspended on an array of fine wires that

form a 3-D lattice throughout the volume of the acoustical box described above,

as suggested in Figure 3.2 A, in a way that does not interfere too much with the

acoustics of the box. Each microphone records the local oscillations of air

pressure at that point in the volume, and transduces it to an alternating electrical

voltage that drives a simple circuit, as depicted in Figure 3.2 B, creating a current

that flows clockwise around the circuit during the positive phase of the acoustical

oscillation, and counter-clockwise during the negative phase. Two side loops

connected to this circuit are equipped with light-emitting diodes (LEDs). Besides

emitting light, the LED is also a diode, that is, a one-way valve that allows current

to flow in one direction but not the other, like a check valve in a hydraulic or

pneumatic system, or a ratchet in a mechanical system. In this circuit the two

LEDs are biased in opposite directions, so that one side-loop allows current to

flow only during the clockwise phase of the current, the other only during the

counter-clockwise phase. Let us say that the clockwise current LED is green, and

the counter-clockwise one is red. An acoustical standing wave vibration of say 30
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Hz, picked up by the microphone, would thus cause the green LED to flicker at 30

Hz in synch with the positive phase of the wave, while the red LED would flicker at

30 Hz in counterphase to the green one during the negative phase. The rapid

alternation of red and green would create an impression of yellow (red + green in

additive color mixing) as shown in Figure 3.1 B. If the volume of the box were filled

uniformly with hundreds of tiny LED circuits of this sort, then an acoustical

standing wave in the box would manifest itself by a glowing field of LEDs

everywhere throughout the box as a function of vibrational amplitude, leaving dark

regions only at the nodes of the vibration where the acoustical vibration is zero. In

other words, this circuit reveals the magnitude function |u(x,y,z)| of the standing

wave.  

Now to introduce a common strobe signal, let us say that the grid of wires on

which the LED circuits are suspended is connected to a sync pulse that feeds all

the circuits simultaneously with the same alternating sync signal, and this sync

pulse is connected to the side-loop circuits by AND gates, that allow the side-loop

current to flow only during the positive phase of the sync pulse, but blocks the flow

during the negative phase, as shown in the circuit diagram in Figure 3.2 B. If the

sync pulse is now alternated at the same 30 Hz as the acoustical standing wave,

as suggested in Figure 3.2 C, it will turn on the green LED circuits during the

Figure 3.2. A: grid of tiny electrical circuits strung on an array of fine wires throughout the
acoustical box, each consisting of B: a tiny microphone and two LEDs, wired so that the
green LED lights up in the positive phase (clockwise current), the red one lights up in the
negative phase. C: A sync pulse or strobe signal oscillating in phase with the standing
wave serves as a “read enable” line to integrate only during the positive phase, turning on
the green LEDs in positive zones, and red LEDs in negative zones of the standing wave.

B

C

A B

C
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positive phase of the oscillation in the positive zones of the standing wave pattern,

but shut off the red LED circuits during the negative half-cycle, resulting in a static

or flickering pattern of green lights only in the green zones of Figure 3.1 A,

whereas in the negative zones of the standing wave the sync pulse will turn on

only the red LEDs during the positive phase of the sync pulse, and thus this

simple local circuit replicated throughout the volume of the resonator will serve to

light up the wave function u(x,y,z) as volumes of glowing green and red, as shown

in Falstad’s box modes applet. If the sync pulse is phase-shifted to be positive

during the negative phase of the standing wave, this will reverse the patterns of

red and green volumes to paint the negative lobes green and the positive lobes

red, and shifting the phase to intermediate values will reveal a phase-shifted

pattern of red and green zones.  

The sync pulse can also be used to pick out or tune for particular components of

an oscillating signal. For example given a compound standing wave composed of

a fundamental oscillation along with one or more higher harmonics, when probed

with a sync pulse at the fundamental frequency, would reveal only the

fundamental component of the oscillation, not its higher harmonics, whereas when

tuned to the frequency of one of the higher harmonics it would pick out the

waveform of that harmonic component alone. The sync pulse can thus be tuned

somewhat like a radio receiver to pick out the component or components of

interest. This principle of tuning for features by oscillation frequency is also

observed in the interactions between harmonics components of different

frequencies in a compound oscillation.  

 Static and Dynamic Representation of Space and Tim e

One of the most powerful features of a harmonic resonance representation is that

the representation of spatial patterns by a standing wave automatically and

inevitably also includes a representation of spatiotemporal patterns that are

cyclical over time, achieved by oscillations out of synch with the fundamental

resonance. Let us investigate this dynamic aspect of a harmonic resonance

representation using Falstad’s Box Modes applet again. The reader is encouraged

to run the applet and follow along with the examples described below.  

We begin with a first harmonic oscillation in x, by clicking the box [1,0,0] in the

applet. This produces an alternating red/green green/red pattern that represents a

single static waveform that alternates across a fixed static node plane. Clicking

box [2,0,0] produces a second harmonic red/green/red pattern alternating with

green/red/green, again, alternating across (this time) two static node planes, and
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oscillating at a higher frequency. If you turn on both [1,0,0] and [2,0,0] at the same

time however, as shown in Figure 3.3 A, then something strange occurs, due to

the different temporal frequencies of the two components. The observed pattern

alternates between green/red/dark, red/green/red, dark/red/green, as suggested

in Figure 3.3 A through C, and then back again in reverse order, as suggested in

Figure 3.3 C through A. There is a discrete, or stepwise character to this motion,

as the waveform hops abruptly from one mode to the next.  

To understand the meaning of this pattern of oscillation, now turn on all of the

higher harmonics of this same series, that is, click on the squares [1,0,0] through

[7,0,0], as shown in Figure 3.3 D. These nodes represent frequencies that are 2,

4, 8, 16, 32, and 64 times that of the fundamental, or a series of octaves of the

fundamental. The dynamic pattern now begins with a plane of positive green

within the y/z plane, that sweeps progressively from left to right along the x

dimension, as in Figure 3.3 D, E, and F, and when it reaches the end, it reverses

direction and proceeds back from right to left again, as suggested in Figure 3.3 F,

E, and D. This is a highly structured and orderly pattern of behavior across space

and time, a reciprocal sweeping back and forth of a positive plane through an

otherwise negative volume, and the sweep occurs in a series of eight discrete

steps or jumps, rather than a continuous motion, and those discrete jumps can

also be seen as ghostly “echos” of the plane at discrete intervals across the

negative zones in Figure 3.3 D, E, and F. If you click off the higher harmonics of

this resonance, i.e. shut off first [7,0,0] then [6,0,0] etc., you will see a progressive

reduction in the number of steps in the motion, and at the same time a reduction in

spatial resolution, that is, the plane of positive value becomes progressively

thicker, so as to span the same volume in fewer steps. Conversely, adding higher

harmonics increases the spatial and temporal resolution, producing (in the limit) a

perfectly continuous sweep of an infinitely thin plane. What we have here is an

explicit, extended spatiotemporal pattern that is reified across space and time,

represented by a static combination of harmonic frequencies, and the spatial and

temporal resolution are simultanously altered by the addition or removal of higher

harmonics. This is exactly the kind of pattern that would serve as a spatiotemporal

pattern primitive, the dynamic equivalent of the static waveform functions in Figure

2.5 that serve as a basis set for static patterns. For example this kind of

resonance could serve top-down as a motor control signal to produce coherent

waves of contraction in a slab of skeletal muscle, or peristaltic contractions along

a length of digestive tract, or synchronized waves of moving cilia on the surface of

a simple creature, and the same principle could serve bottom-up as a sensory
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function to detect waves of sensory stimuli in those same patterns, that is, an

oscillating bar of light in a visual stimulus, or oscillating tactile sensation in a

somatosensory stimulus, where the dynamic sensory stimulus lights up a static

pattern of nodes whose phase differences represent that dynamic pattern.  

Now let us try a different combination of harmonics, turning on the boxes [1,0,0]

and [3,0,0] simultaneously, as suggested in Figure 3.4 A through C.  This

produces an interesting variation on the dynamic pattern above. This time a pair of

red and green planes appear on opposite sides of a central node plane, and each

plane oscillates back and forth across one half of the cube in mirror symmetry with

the other, like two hands clapping, both reversing polarity as they meet at the

center. In other words, the pattern goes through the sequence of Figure 3.4 A, B,

and C, then it continues through two more stages, (not shown) that we could call

D and E, which are mirror-reversed replicas of patterns C and B; then the

sequence reverses again through E, D, C, B, and back to A again, and the whole

forward and reverse cycle repeats indefinitely. Again, addition of higher harmonics

in the same pattern, as shown in Figure 3.4 F through H, (and two more stages I

and J, not shown) increases the resolution of this dynamic pattern across both

space and time, while preserving the same basic pattern. With the addition of the

Figure 3.3. A: Turning on the first and second harmonics in x produces B: a green slab on
the left, with red elsewhere, that moves in three discrete steps to the right, then back again
to the left. C: Turning on the higher harmonics of this same pattern produces D: a thin slab
of green, with red elsewhere, that also sweeps alternately left and but this time in eight
discrete steps, a remarkably structured or ordered pattern of regular reciprocating motion.

A

B

C

B CA

E FD
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higher harmonics, the pattern increases in resolution both in space and time, that

is, the positive and negative planes get thinner, and the transition between F and

G occurs in four discrete steps, instead of just two, as in A and B.  

These same patterns of simple motion can of course be replicated in the y and z

dimensions by the same principle, as the reader can easily verify with Falstad’s

simulation. Even more interesting is to observe the combinatorial patterns that

emerge with simultaneous patterns in two dimensions. For example turning on the

harmonics [1,0,0] through [7,0,0] at the same time as [0,1,0] through [0,7,0]

creates two planes at right angles to each other, sweeping back and forth across

the x and y dimensions simultaneously, and adding nodes [0,0,1] through [0,0,7]

creates three sweeps at right angles to each other, an extraordinarily orderly and

systematic pattern to emerge from such a simple resonating system. (Note:

Falstad’s simulation is arbitrarily limited to 10 harmonics presented

simultaneously, so only lower resolution approximations to these patterns can be

actually achieved in the simulation, although this limitation does not apply to a real

resonance mechanism).  

Figure 3.4. Turning on the first and third harmonics in x produces A: a pattern of green and
red planes at the center, that jump B: left and right out to the ends, and C: back to the
center, where they reverse color, and jump to the ends, then back to the center again (not
shown) in endlessly repeating cycles. C: Adding also the higher odd harmonics (fifth and
seventh) produces D through F: a refined version of the same inward and outward pattern,
this time sweeping almost continuously in four little jumps out to the ends and back again.

B

A B C

F G H
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An even more intriguing pattern is obtained by the cross-product combination of

harmonics across x and y, that is, by turning on nodes [1,1,0], [2,2,0], [3,3,0] ... up

to [7,7,0], as shown in Figure 3.5.  This produces a peculiar compound sweep

pattern that begins with a green plane of positive values in the diagonal x = y

plane, as in Figure 3.5 A, that splits into two parallel planes connected on two

sides like an open-ended box, as in Figure 3.5 B, that expands outward in

opposite directions as a hollow box whose short sides grow as its long sides

shrink, as in Figure 3.5 B and C, ending in a diagonal plane in the opposite

direction (in the y = 1-x plane, shown in Figure 3.5 D) and then the pattern turns

around and repeats in reverse sequence from D back to A, and the alternately

reversing sequence continues in cyclic oscillation. Another extraordinarily

complex and lawful emergent pattern from very simple parallel resonance

principles, a two-dimensional generalization of the one-dimensional reciprocating

sweep of the last example.  

Finally, a still more interesting pattern is obtained by the full cross-product terms

across x, y, and z, that is, by turning on nodes [1,1,1], [2,2,2], [3,3,3] ... up to

[7,7,7], as shown in Figure Figure 3.6 A through D.  This produces a strikingly

intricate pattern of orthogonal sweeps back and forth between oppositely-oriented

tetrahedra that span the opposite corners of the cube. The bright triangle in Figure

3.6 A is the near face of a tetrahedron, with corners at points {0,0,0}, {1,0,1},

{0,1,1} expressed in unit cube coordinates of the spatial domain, with the opposite

vertex of the tetrahedron located at {0,0,1}, seen transparently through the

triangular front face. (Note: {curly braces} are used to indicate coordinates in the

spatial domain of the standing wave resonance in the box, while [square brackets]

indicate harmonics in the frequency domain in the grid of little squares.) Each of

the four triangular surfaces of the tetrahedron exhibits a bright green (positive)

Figure 3.5. A: Turning on the [x,y] cross-product harmonics produces B: a diagonal green
plane that expands outward like a hollow box then collapses back to a diagonal in the
other direction, before reversing the sequence and returning to the initial configuration,
and then repeating endlessly.

A B C D
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value throughout its surface, with red (negative) elsewhere, both inside and

outside the tetrahedron. The four surfaces sweep simultaneously in a direction

normal to their planar surface toward the opposite vertex, as shown in Figure 3.6

B through D, in a three-dimensional generalization of the growing/shrinking box of

Figure 3.5, with an additional third dimension of symmetry in space and time. The

final shape in Figure 3.6 D is inverted relative to the initial tetrahedron, with

vertices now spanning the cardinal corners of the unit cube, that is,

{1,0,0},{0,1,0},{1,1,1} and {0,0,1}.  

The nature of this pattern can be analyzed by turing on its first component all by

itself, that is, by clicking the node [1,1,1] alone. This marks the cardinal corners of

the spatial cube in the resonance representation with positive polarity, that is,

corners {1,0,0}, {0,1,0}, {0,0,1} appear green, while marking the opposite,

complementary, or alternate corners as negative, that is, corners {0,1,1}, {1,0,1},

{1,1,0} appear red. If you allow the simulation to run, you will see these opposite

corners alternate in polarity, the positive corners turning negative, and vice-versa;.

Now turn on the next harmonic in the frequency representation, that is, click box

[2,2,2] along with [1,1,1]. This serves to connect the positive corners with each

other to form a fuzzy tetrahedron with unit-vector corners {1,0,0}, {0,1,0}, {0,0,1},

and negative elsewhere. Clicking still higher order harmonics [3,3,3], [4,4,4], etc.

preserves the same tetrahedral shape, but refines its spatial resolution to a crisp

geometrical form. Now if you allow the simulation to run, you will see each of the

four sides of the tetrahedron sweeping as a plane travelling in the direction of its

surface normal, shrinking to a point at the opposite vertex of the tetrahedron, from

whence it sweeps back again from the apex back to the base, and back again in

endless cycles, all four sweeps occuring across all four faces and their opposite

Figure 3.6. Turning on the [x,y,z] cross-product harmonics produces at first A: a
tetrahedron. All four faces sweep toward their opposite vertices simultaneously, (B through
D) crossing and reversing in the middle, producing a tetrahedron the other way, (D), with
faces and vertices reversed, after which the pattern evolves back again in reverse
sequence from D through C, B, back to A again, and so on in endless succession.

A B C D
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corners of the tetrahedron simultaneously, a remarkably beautiful and intricate

pattern of mirror-symmetrial motions, whose complexity emerges spontaneously

from a simple resonance in a box. In fact, this is just a generalization of the pattern

of motion shown in Figure 3.5 into the third dimension.  

Combinations of Different Dimensions

Other intricate patterns can be obtained by combinations of harmonics in different

dimensions. The second harmonic pattern obtained by clicking [2,0,0] for the x

dimension, or [0,2,0] for the y, creates a red/green/red or green/red/green

“sandwich” pattern in the corresponding dimension, as seen for the x dimension in

Figure 3.7 A. If you click both [2,0,0] and [0,2,0] simultaneously, as shown in

Figure 3.7 B,  you get a combination pattern that is a central cylinder surrounded

by four corners of opposite polarity, as seen in Figure 3.7 B, a two-dimensional

generalization of the center-surround contrast of the corresponding one-

dimensional patterns. (Actually, the “cylinder” has a diamond-shaped cross-

section rather than a circular one, as can be seen by increasing the brightness to

approximate a polarity mapping of the pattern of sign(u(x,y,z))) If you now click

[0,0,2] along with [2,0,0] and [0,2,0], as shown in Figure 3.7 C, you get a three-

dimensional generalization of the center/surround concept that appears as a

central sphere (actually an octahedron, or two pyramids attached base to base)

surrounded by opposite-polarity corners. These spatial patterns are static, that is,

the nodes remain fixed, although the positive and negative regions reverse

alternately about those static nodes, because the x, y, and z components oscillate

at the same frequency.  

Figure 3.7. A: The second harmonic in x produces an on-center off-surroudn sandwich
pattern. B: Adding the second harmonic in y produces a two-dimensional center/surround
as a central green cylinder surrounded by red. C: Adding also the second harmonic in z
produces a three-dimensional center-surround, a central green sphere encircled by a red
surround.

A B C
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Rotation Through Relative Phase Adjustments

Falstad’s Box Modes applet also allows you to change the relative phases of the

component harmonics by dragging the mouse horizontally. This is exactly

analogous to shifting the phase of the sync pulse as described above. When you

click one of the little boxes in Falstad’s simulation, it toggles the corresponding

frequency node on or off with each click, with the phase set to zero, so when you

click more than one box, they are automatically in phase with each other. But you

can also click and drag the mouse horizontally in the little click box to shift the

phase of the pattern from 0 to 2π, which is indicated in the simulation by a tiny

blue line that scans across the little click box like a tuner needle on a radio dial.

For example if you click box [1,0,0] with the simulation stopped, to create a first

harmonic green/red pattern, then drag the phase with the mouse, the waveform in

the resonator will shift in phase with your mouse drag, which converts the green/

red pattern to a red/green one, with a zero amplitude point in between the two

opposite phases. With the simulation running, this has little practical effect on a

single harmonic waveform when played by itself, but relative phase has a

profound effect when the waveform is composed of two or more components.  

(Falstad’s Box Modes applet also allows you to adjust the magnitude of the wave

by dragging the mouse vertically in the little boxes. This also has the effect of

reversing the polarity of the waveform, because a magnitude of -1 swaps the

positive and negative regions. We will be leaving the magnitude alone for the

following demonstrations, and mention it here only to prevent confusion if this

feature is encountered accidentally.)  

Let us begin with a pattern of [1,0,0] and [0,1,0] simultaneously, as above, both

clicked to phase zero. This produces a red/green pattern across a 45 degree

angled nodal plane, as shown in Figure 3.8 A.  Turning the individual components

off and on again in turn, shows how the horizontal and vertical green/red patterns

combine to create the diagonal one. Now click node [0,1,0] and drag it sideways

to shift its phase. If the simulation is stopped, this will progressively change the

angle of orientation of the node plane separating red and green regions, as shown

in Figure 3.8 B, C, and D. If the simulation is running, however, it causes the entire

pattern to rotate continuously, either clockwise or counter-clockwise, depending

on the exact phase shift. As the phase shift is slowly increased from zero, the

pattern rotates first counter-clockwise, and the rate of rotation rises to a peak at

phase difference of 90 degrees, when the component waves are in quadrature,

then reduces back to a stationary pattern as the phase difference passes
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through180 degrees. If the phase is advanced still farther, the rotation begins

again this time in the opposite direction, clockwise, as the phase of the y

component is now retarded rather than advanced relative to the phase of the

oscillation in x, reaching a maximum rotation rate when the waves are in negative

quadrature. And if the phase is shifted still farther the phase shift returns to zero,

and the rotation slows then stops. What we have here is a representation of a

dynamic rotating pattern by way of a static phase relation between waveform

components. Trigger two oscillations with the right frequency and phase relation,

and you get a rotating pattern. This kind of dynamic pattern generation principle

could be used for example in motor control, to produce a rotary pattern of

muscular contraction, and in sensory systems, to capture or characterize the

rotation of a dynamically cycling waveform pattern by the phase relation between

its static harmonic components. In this example the rotation occurs through the x,y

dimension. Clicking the z node [0,0,1] tilts the red/green divide 45 degrees in the

x,z and y,z dimensions, and shifting its phase sets the pattern into rotation across

the z dimension also.  

Higher harmonics produce more complex spatial patterns, and phase shifting

them produces more complex patterns of motion also. For the next example clear

all active nodes, and click nodes [2,0,0] and [0,2,0] again, to produce the two-

dimensional center-surround pattern in Figure 3.9 A, which is the same as Figure

3.7 B above. Now with the simulation stopped, progressively shift the phase of the

y component [0,2,0] and you will see a progression of the pattern as shown in

Figure 3.9 B through D. At first, the central green cylinder elongates vertically to

an elliptical cross-section, as do the surrounding red zones, which link up

vertically, as in Figure 3.9 B, and this pattern continues to morph into a simple red/

Figure 3.8 A: Turning on the first harmonic in x and y creates a green/red pattern oriented
at 45 degrees. B through D: Advancing the phase of the y component sets the pattern into
rotation at a rate that is proportional to the phase difference between the two oscillations,
that reaches a maximum at quatrature (phase difference of 90 degrees), drops to zero at
counterphase (180 degrees), then rotates in the opposite direction to a maximum at
negative quadrature (270 degrees) and back to zero when back in phase.

A B C D
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green/red sandwich of vertical slabs, as in Figure 3.9 C. This is the point where

the phase of the y component is just reversing polarity, and thus the pattern is

determined entirely by the x component alone, as can be easily verified by clicking

the x node [2,0,0] off momentarily, and seeing pattern disappear altogether.

Shifting the phase further still produces the pattern in Figure 3.9 D, with two red

lobes left and right, and two green lobes top and bottom. Each of these phase

shifts of the static waveforms produce their own characteristic combination

pattern. But every combination also has a unique spatiotemporal pattern of cyclic

evolution.  

With the simulation stopped, re-adjust the phase of the y component, [0,2,0] until

you get the central cylinder pattern in Figure 3.9 A. If you allow the simulation to

run, the pattern alternates with its inverse across a static pattern of nodal planes.

Now shift the phase of y a little farther again to get the elliptical cross-section

stretched cylinder, and let the simulation run. Now we have a strange circulatory

motion where pairs of blobs from left and right merge horizontally into a single

blob at the center, which then splits vertically to a pair of blobs one above, one

below, that move up and down respectively, away from the center, to be replaced

by the next pair of blobs coming in from left and right to merge at the center, and

so on round and round, joining horizontal, and splitting vertical in endless cycles. If

you observe the behavior of the nodal surfaces that separate red and green

volumes, there are four axes of rotation about which four nodal planes rotate in

synchrony. And if you shift the phase of y to appear as in Figure 3.9 D, and then

let the simulation run, the pattern will once again alternate between opposite

contrasts across static nodal surfaces. The points where the nodal pattern is static

are the points where the x and y component oscillations are symmetrically

balanced in phase, whereas a phase that is advanced or retarded creates rotation

Figure 3.9. Starting with A: a second harmonic on-center off-surround in x and y, the phase
of the y component is varied from B: a vertical elongation, to C: a center/surround in the x
dimension only. Eventually the pattern shifts to D: positive lobes vertically and negative
lobes horizontally. These are all spatial permutations and combinations of the on-center
off-surround concept in different dimensions.

A B C D
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either clockwise or counter-clockwise, respectively. The maximum rotation rate

that can be achieved in this kind of representation is obtained with waves that are

in perfect quadrature, that is, with a phase difference of π/2 or 90 degrees, at

which point the rotation rate of the combined x/y pattern is equal to one full circle

for every cycle of oscillation of the second harmonic oscillation, which in turn is

four times the frequency of the fundamental. With rotational velocity expressed by

the amount of phase lag and lead between two waveforms, it is natural for the

phase difference to increase to a maximum at quatrature, diminish to a minimum

again in 180 degree counterphase, and then build up again to a maximum in the

opposite direction at negative quatrature before diminishing to zero again in-

phase.  

Waveforms that are composed of different frequencies in different dimensions

always produce dynamic patterns of motion. For example clicking nodes [1,0,0]

and [0,2,0] creates an oscillating pattern that morphs cyclically between the first

harmonic in x pattern, green/red (or its complement) horizontally, as in Figure 3.10

A, and the second harmonic y pattern, a vertical red/green/red sandwich pattern

shown in Figure 3.10 D, passing through the intermediate stages in Figure 3.10 B

and C, first left-to-right (A, B, C, D), then it continues through three more stages

(not shown) which we could call E, F, and G, that are the exact mirror images of C,

B, and A respectively, ending in a red/green pattern that is a mirror image of the

green/red initial pattern, then the whole sequence plays back in the reverse

direction again, G, F, E, D, C, B, A, and the cycle repeats alternately forward and

backward in sequence indefinitely. This pattern of motion is best understood by

observing the nodal planes that separate the red and green volumes, as

suggested in the overlay. The nodal plane begins as a vertical surface between

Figure 3.10. A first harmonic in x, along with a second harmonic in y, produces an
oscillating pattern that begins as A: two parallel slabs, B: one bulges as the other shrinks
back until C: the bulger cleaves the shinker in two pieces that move up and down
respectively culminating in D: a second harmonic center/surround sandwich in y. The full
cycle would continues four more frames to the right (not shown) in exact mirror symmetric
pattern, ending with parallel slabs in the opposite polarity. It then reverses direction and
cycles through all the same patterns in the reverse sequence, and then repeats
indefinitely.

A B C D
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red and green (A), then folds in the middle about a horizontal axis (B), the upper

half rotating counter-clockwise, the lower half clockwise, as indicated by the

arrows. As the rotation continues (C), the nodal planes become parallel (D), and

the rotation continues through a full 360 degrees above and below, through E, F,

and G (not shown), then a full 360 degrees back the other way through G, F, E, D,

C, B, and A, totally inverting the volumes of red and green that they separate. In

other words, this pattern represents symmetrically opposed rotations around two

vortices in reciprocating alternation.  

In this experiment there was no component in the z dimension, and thus the

pattern is constant or unchanging with differences in depth, a straight projection of

the 2-D pattern across x and y through the z dimension. We can describe the

progression of patterns in Figure 3.10 A through D as a green and red slab; the

green slab folds into a wedge, while the red slab splits into an anti-wedge, filling

the space not occupied by the wedge; the angled surfaces of the wedge rotate to

a parallel sandwich configuration as shown in D and beyond. We can now

modulate the z dimension to generalize this pattern to a full three-dimensional

shape. If we click on [0,0,1] along with [2,0,0] and [0,2,0], this first harmonic in z is

of the same frequency as the first harmonic in x, and thus oscillates in phase with

it, rotating the pattern of reciprocating wedge and anti-wedge to run from one

corner of the cube to the opposite, across the diagonal. If you click and drag the

phase of the z component, the reciprocating wedge pattern begins to rotate in the

x/z dimension, to appear just like the simple rotation in Figure 3.8 when viewed

from the top, while still appearing as a reciprocating wedge and anti-wedge in the

x/y dimension like Figure 3.10 when viewed from the front.  

Now click off the [0,0,1] node and replace it with the [0,0,2] node, second

harmonic in z, along with [1,0,0] and [0,2,0]. This second harmonic in z oscillates

in phase with the second harmonic in y, which converts the wedge and anti-wedge

pattern into its three-dimensional generalization, a cone and anti-cone in the y/z

dimensions as shown in Figure 3.11 B and C.  As in its two-dimensional projected

wedge form, this pattern morphs continuously from two parallel slabs in Figure

3.11 A, to a cone and anti-cone in Figure 2-18 B and C, to a cylinder and anti-

cylinder in Figure 2-18 D, then on to another cone facing the other way, (E and F,

not shown) to parallel slabs in opposite polarity (G, not shown in the figure) and

back again through the reverse sequence again, and on to endless sequential

alternation. The rotation of nodal surfaces we saw in Figure 2-17 is now no longer

a simple rotation about two axes parallel to the z dimension, but a higher order
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rotation about a circular axis of rotation embedded in the z/y plane, as suggested

in the overlay, with rotation first left-to-right through the center of the circle (the

advance of the puncturing cone) with a reverse counterflow right-to-left around the

outside of the circle (the counter-movement of the anti-cone) as suggested by the

overlay, and a reverse flow in the second half-cycle to the left at the center, and to

the right in the periphery (not shown). This pattern is suggestive of the most primal

reciprocating motions of coitus, a motor pattern observed even in some of the

simplest organisms.  

We could go on endlessly with more examples of spatial, or spatiotemporal

patterns and the harmonics required to generate them. But the significance of this

concept is not so much in the details of the representation, or exactly how it

breaks down shapes to express them in a sinusoidal basis set, but the true

significance of harmonic resonance is that it demonstrates how an explicit,

spatially-extended volumetric representation can be coupled to an abstract

featural mechanism that is capable of both detecting patterns present in the

representation bottom-up, as in visual recognition, as well as projecting patterns

into the representation by reification, or filling-in, demonstrating the constructive,

or generative perceptual function that is clearly a significant aspect of perception,

and yet prominently absent from most models of perceptual representation and

processing. And this explicit spatial representation is expressed in a holistic

Gestalt-like mechanism that captures some of the observed field-like aspects of

perception and conscious experience.  

The effect of Resonator Shape

Although the cubical box of Falstad’s Box Modes applet exhibits an extraordinary

repetoire of complex patterns and combinatorial patterns, all of these patterns are

Figure 3.11. A: two parallel slabs, B: one bulges as the other shrinks back until C: the
bulger punctures the shinker and D: turns into a positive cyllinder surrounded by negative
field. The full pattern continues through three more stages in exact mirror symmetry to the
first four, ending with parallel slabs in the opposite polarity. It then reverses direction and
cycles through all the same patterns in exactly the reverse sequence each cycle, and
repeats again for ever and ever.

A B C D
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related to the cubical form of the resonator itself. Even the complex tetrahedral

patterns in Figure 3.6 are merely reflections of the cubical symmetry of the box,

tracing the medial axis planes of symmetry between orthogonal faces of the cube.

We see the same principle in the Chladni figures, that depend so much on shape

of the resonating plate. Square plates produce rectagonal and diagonal patterns

and sub-patterns, circular plates create radial and concentric patterns, triangular

plates produce symmetrical partitions of the triangular form, as seen in Figure

1.16. And so also in three dimensions: a spherical resonator creates concentric,

radial, and lateral type subdivisions, as seen in the atomic orbitals of Figure 1.18,

whereas the cubical box creates the patterns shown in Falstad’s Box Modes

applet. This strict dependence of the family of standing waves on the geometry of

the resonator is useful for some applications, such as motor representations,

where the shape of the resonator can be tuned to match the fixed topology of the

body, but not so useful in others, as in perception, where the range of possible

patterns or spatial interpretations of a stimulus should ideally remain as

unrestricted and universal as possible. We will discuss later how this invariance

aspect of perception can also be achieved in a harmonic resonance

representation.  

The usefulness of standing (and/or travelling) waves as a motor representation

was discussed in chapter 1, with the example of a swimming eel, depicted in

Figure 1.13, where the sinusoidal motor pattern propagating continuously from

head towards tail, is modeled by a travelling wave in a cylindrical resonator,

because a cylinder is a close enough model of the muscular topology of an eel.

But where is this resonance located? Are we talking about a resonance in the

eel’s brain and spinal cord, which is transmitted to the muscles by motor neurons?

Or are we talking about a resonance in the muscle tissue of the eel, waves of

electrochemical polarization and depolarization that create waves of contraction

and extension in bulk muscle tissue? The example of coordinated motor patterns

in simple creatures lacking a central nervous system, and of the cardiac muscle

that continues to pump even after the cardiac nerve has been severed,

demonstrate that it is possible for coherent waves of muscular contraction to

emerge spontaneously in the absence of stimulation from motor neurons and a

central nervous system, and it is unlikely that this basic property was lost when

the central nervous system first evolved. More likely, the central nervous system

evolved so as to make use of this more primal basic principle of spatial

representation already inherent in muscle tissue. The central nervous system

spurs the muscles into activity like a cowboy spurring his horse to stimulate a
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gallop, but the orderly waves of periodic contraction and extension that propagate

through the muscles of the galloping horse are not sculpted or reified by that

sparse and punctate stimulus, nor by the punctate motor neuron activation that

the spurs indirectly trigger, but rather they emerge spontaneously from natural

oscillations within the horse’s brain, nervous systems, and musculature acting in

unison, in response to the sparse stimulus.  

This concept finally offers an explanation for the relatively sparse distribution of

motor neuron synapses across muscle tissue, or innervation ratio, which can often

be several thousands of muscle fibers for each motor neuron. According to the

conventional explanation, each individual motor neuron innervates a patch of

muscle tissue through a set of motor synapses distributed across the patch, to

form a “motor unit”, and patterns of motor contraction are explained by patterns of

firing of such motor units triggered by activation in their motor neurons. According

to this explanation, a patch of muscle in the motor unit integrates the activation

from all the synapses in the patch, and contracts in proportion to a kind of average

of all these scattered stimuli. This is basically a top-down concept, with all motor

commands arriving top-down from the motor cortex. According to the resonance

model on the other hand, the motor units do not form or define the waveform of

muscular contraction, they merely trigger and synchronize it. But the contractile

waveform itself emerges from the muscle tissue in response to stimulation, as a

spatial reification process that occurs down in the lowest level within the muscle

itself. This distinction could be tested neurophysiologically, at least in principle, by

severing individual motor neurons in the middle of a muscle, and observing

whether contractions stimulated in adjacent regions propagate also across the

denervated region.  

If the contractile motor pattern is indeed sculpted primarily by natural endogenous

resonances, then the most effective way to trigger and modulate or control those

resonances in the muscles would be with resonances in the motor system tuned

to lock into and synchronize with the resonances in the muscles. In other words,

the central nervous system also operates by harmonic resonance, that is, by

coherent patterns of standing waves and travelling waves throughout the brain

and nervous system, that communicate synchronous oscillations across widely

separated locations. Perhaps the most powerful aspect of a harmonic resonance

model of nervous system function is the natural tendency of resonating systems to

couple with each other to establish a global resonance that is tuned not only to the

natural resonances of its component parts, but also to the resonance of the
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emergent whole created by the coupling of the individual parts, as we see in the

coherent waving of cilia in the paramecium, and in the coupling of oscillators like

adjacent pendulum clocks, and the synchronous oscillations across the molecules

of a crystal oscillator. This is the Gestalt in Gestalt theory, the whole is more than

the mere sum of its component parts. The natural unifying properties of harmonic

resonance are responsible for the coherence and synchrony between the

experience of colors, motions, and sounds in perception, the coherence and

synchrony of body motions in locomotion, mating, and dance, and the coherence

and synchrony of perceptual experience with motor function, as a dancer matches

their movements to those they perceive in their dancing partner, or as musicians

synchronize their playing motions to the sounds they are perceiving from the rest

of the band. The powerful unifying and synchronizing force of harmonic resonance

is ultimately responsible for unity of conscious experience.  

Rotation Invariance in Perception

The strict dependence of a harmonic resonance system on the geometry of the

resonator is a disadvantage in the case of perceptual or cognitive representation,

whose spatial patterns should ideally be determined by the properties of the

stimulus, rather than of the resonator, so as to be able to represent any arbitrary

shape that might be perceived, or imagined in mental imagery. It turns out that

harmonic resonance has some pretty unique invariance properties that are

extremely useful for a perceptual representation. In Figure 2.6 A we introduced

the mechanism of a cubical box, with speakers mounted on three orthogonal

faces, connected to three signal generators, that produce the x, y, and z

components of the standing wave in the box. This mechanism does not have

rotation invariance, because it draws a distinction for example between a second

harmonic in x and a second harmonic in y, even though they are the same pattern

only presented at a different orientation. The cubical “bottle” on the other hand,

shown in Figure 2.6 B, and its related rank of organ pipes in Figure 2.6 C, is

significantly different in this regard. Blowing air across the mouth of this cubical

bottle is most likely to produce vertical pressure fluctuations, and thus standing

waves in the y dimension, because the mouth of the bottle is located at the top of

the box, so the pressure tends to fluctuate in and out of it. But it is in the nature of

resonance that in fact any of the harmonics of the bottle can emerge, with greater

or lesser probability, if sufficiently energized with a high velocity air flow, like the

different harmonics of a bugle that can be obtained by pursing the lips and blowing

harder. And among those many possible harmonics are the second harmonic in x,

y, and z, any of which can appear in the bottle, especially when encouraged by
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careful positioning of the air stream. And the vibrational frequency of each

standing wave pattern depends on the pattern itself, not its orientation. Therefore

the “detection” of the presence of this second harmonic pattern by a sympathetic

resonance in the second harmonic organ pipe, is a detection that is invariant to

the orientation of the wave, it is a rotation-invariant recognition of the standing

wave pattern in the resonator, at least for the six canonical orientations of the

cube.  

A similar distinction holds for the microphone that is used to record or sample the

standing wave, like the microphone in Figure 3.2 B. A simple diaphragm

microphone records the transient pressure fluctuations across the opposite faces

of its diaphragm. A standing wave in the x dimension creates pressure fluctuations

only across the x direction, so a microphone diaphragm oriented parallel to the x,y

or x,z planes, could not pick up the x component of the vibration at all, because

pressure fluctuations on one side of the diaphragm are exactly balanced, or

cancelled by identical fluctuations on the other side. A simple diaphragm

microphone therefore is a directional detector. But the microphone can be easily

modified to make it invariant to orientation by sealing the back side of the

diaphragm in a housing that is connected either to an external pressure reference,

or to a closed reservoir of compressible air, to provide a pressure reference

independent of the fluctuating pressure at that point in the resonator. This kind of

microphone is omni-directional, it will pick up acoustical vibrations across the x, y,

and z dimensions, and in fact, most microphones are baffled in exactly this

manner for this reason.  

The issue of directional invariance applies equally to loudspeakers. When the

diaphragm of a simple loudspeaker advances (and retreats) during vibration, it

creates a pulse of higher (lower) pressure in front of the diaphragm and lower

(higher) pressure behind it, two complementary waves that cancel each other

destructively around the edges of the speaker, leaving only a directional vibration

in front of the diaphragm, and its negative mirror image behind it. As with the

microphone, the speaker can be made omni-directional by sealing the back side

of the diaphragm and connecting it to an independent external or internal

reference, thus converting the alternating positive/negative pressure dipole of the

directional speaker, to an effective “monopole” of alternating pressure at one

location, that alternately injects and extracts pulses of air in the resonator,

producing a spherically propagating wave from that source, expanding like rings in

a pond. (The principal purpose of speaker boxes in audio systems is to seal off
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and baffle the negative wave from the back of the diaphragm, to prevent

destructive interference with the positive wave from the front, and that is why

speakers sound much quieter when removed from their speaker boxes.) The

distinction between directional and non-directional detection (through

microphones) and emission (through loudspeakers) bears on our model of

resonance in the acoustical box.  

If the resonator box filled with an array of glowing LED circuits depicted in Figure

3.2 A, were constructed using directional microphones, there would have to be

three orthogonally-oriented microphones, with three amplifier circuits, at every

location in the grid, and the oscillations would occur entirely independently across

x, y, and z dimensions. But if the microphones are configured to record

omnidirectionally, then they would detect sound waves in x, y, and z dimensions,

and thus only one circuit would be required at each location, and the response of

the system would become invariant to the orientation of the pattern in detection. It

is the same circuits that resonate, for example, to a second harmonic wave

pattern, whether oriented in the x, y, or z dimension. If an omni-directional

resonator of this sort is connected to omni-directional detectors, like the organ

pipes suggested in Figure 3.2 C, then the presence of a second harmonic of any

orientation in the box would trigger a sympathetic resonance in the second

harmonic organ pipe, and the resonance in the organ pipe would in turn amplify

the corresponding waveform in the resonator.  

Huygen’s Principle and Phased Array Antennas

A regular grid or lattice of identical loudspeakers, or other wave sources, can

generate coherent globally patterned waveforms by Huygen’s principle, as seen in

phased array antennas. According to Huygen’s principle, a wave front propagating

through space is equivalent to a line of point sources, each propagating waves

that radiate outward like the rings in a pond when a stone is thrown in. If a straight

line of stones is dropped into a pond simultaneously, the outward-propagating

rings from each individual source add together by constructive and destructive

interference, summing together their common component, which is a wave front

parallel to the line of sources propagating outward at right angles to the line, while

all the other waves cancel each other by destructive interference. This too is a

distinctly Gestalt phenomenon, where the global coherent configuration is

preserved, while the local artifacts quickly fade due to lack of global support. This

principle is employed in phased array antennas, where the phase of the signal in

each individual antenna of the array is carefully tuned to produce the desired
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global waveform. For example if the antennas in an array are triggered to emit a

train of pulses in uniform sequence from left to right, this will produce a moving

wave, travelling left to right, at a speed determined by the time interval between

successive pulses, which will leave a pair of angled wave fronts in its wake, like

the bow waves of a boat moving left to right. If the antennas are triggered in two

waves, one travelling left-to-right, one right-to-left, to meet at the center, this will

create two sets of angled waves, like the bow waves of two motor boats that

collide head-on in the middle. And if the speed of the propagating wave is varied

as a quadratic function of distance from the center, starting faster near the

periphery and slowing to some speed at the center at the collision point, this can

create parabolic waves propagating outward as if from a parabolic dish, all from a

flat antenna. This is the principle employed in modern phased array radars, in

which a flat antenna composed of a grid of identical transmitter elements,

generates a focused radar beam as if projected from a parabolic antenna dish,

and the direction of the projected beam can be controlled on the fly by varying the

phase of the signals radiating from one side of the antenna relative to the other,

creating a fully steerable focused beam from a fixed flat antenna with no moving

parts. This same principle allows the array of omni-directional loudspeakers in our

acoustical box to generate virtually any waveform travelling in virtually any

direction, by simply controlling the relative phase of transmission from the

individual speakers. The phased array principle also operates in reverse, for a

receiver antenna instead of a transmitter, that allows a fixed flat antenna to

receive as if it were a steerable parabolic antenna, by simply time-delaying the

signals from the individual receptor elements by the same pattern as that used in

transmission. For focused detection of a distant source that is radiating waves

outward in expanding shells, it is necessary to time-delay the signals from the

center of the antenna relative to those in the periphery, so as to receive the

spherical wave fronts simultaneously from the periphery and the center, and at

every intermediate point, each delayed by the appropriate quadratic function, as if

the detectors were mounted on a parabolic surface instead of a flat one. The

quadratic time delay turns the flat antenna into a functionally parabolic one, and

further time-delaying the signals coherently from left to right, or top to bottom,

makes the antenna functionally equivalent to a steerable radar dish.  

The phase patterns required for a phased array radar are computed on the fly by

on-board digital hardware following mathematical formulae. How could these

kinds of computations be performed in the wetware of the brain, or in the case of a

simple acoustical box? The answer is to make use of the principles of harmonic
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resonance itself to perform the required computations to define coherent spatial

patterns for a phased array transmission. A first harmonic standing wave, for

example, vibrating in the acoustical box, creates a coherent wave front that travels

back and forth in orderly fashion from one side of the box to the other, triggering

the array of microphones arrayed within the box with exactly the right pattern of

synchronized waveforms that correspond to the first harmonic resonance. For

example if the audio signals from all of the microphones in the array throughout

the box were recorded in a multi-track acoustical recording, then played back in

the same box, with each track played back in the same location where it was

recorded, this will re-create the original first harmonic standing wave back in the

acoustical cavity. Furthermore, this re-creation is not just a top-down pattern

imposed on the resonator, but rather, it is a re-creation of the original harmonic

conditions that formed that first harmonic standing wave in the resonator in the

first place. The wave emerges spontaneously in response to the trigger of the

phased array pattern encoded in the loudspeaker signals. As in the case of the

ennervation ratio of the motor units described above, the phased array signal

need not recreate the whole waveform in all its sinusoidal detail in a totally top-

down process, it merely needs to trigger the emergence of a first harmonic

resonance in the resonator, and this can be achieved even with a very sparse

“ennervation ratio” using only a handful of loudspeakers that capture a coarse

sampling of the required waveform in the acoustical box, to recreate that wave

back in the same box at the full original resolution. As that first harmonic emerges,

it automatically sculpts itself to mathematical perfection by simple resonance in

the resonator. All that is required of the “top-down” signal is to favor the first

harmonic over other harmonic alternatives, the resonance itself will take care of

filling-in or reifying the waveform to its maximal resolution.  

This concept of phased array triggering of spatial standing waves offers a

paradigm to explain the intimate coupling between spatial patterns in the different

cortical and sub-cortical areas across the brain. For conceptual clarity, we have

been discussing microphones and loudspeakers as distinct reception and

emission devices. In fact, microphones and loudspeakers operate by exactly the

same principle, a simple microphone will also serve as a loudspeaker, and vice-

versa. For reciprocal coupling between cortical areas, it is more useful to think of

the microphones and speakers in the acoustical box as one and the same

element that can work in both directions, transducing vibrations of the diaphragm

into electrical oscillations in a circuit, and transducing electrical oscillations in the

circuit to vibrations of the diaphragm. Picture a pair of acoustical boxes, each
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equipped with an array of microphone/speakers, with a set of parallel connecting

wires that connect each mike/speaker in one box to the mike/speaker at the

corresponding location in the other box. A standing wave stimulated in either box

will tend to stimulate the same standing wave in the other box, the two boxes will

resonate together in a larger coupled resonance of both boxes simultaneously, in

which any modulation of the resonance in one box will be communicated

immediately and in parallel to the other box. This, I propose, is the principle by

which standing wave patterns in one cortical, or sub-cortical area are transmitted

to adjacent areas, and also how the retinal image is transmitted up the optic nerve

to the brain.  

Full Rotation Invariance with Spherical Resonator

The rotational invariance of the standing waves in a cubical box is a direct

consequence of the number of rotational symmetries of the cube, that is, that the

cube remains geometrically identical at six different orientations (12 different

directions, if polarity is considered), and thus resonances at those orientations are

essentially identical. An even more impressive degree of rotational invariance can

be obtained by using a still more symmetrical resonator. If the cubical resonator is

replaced with a spherical one, the family of standing wave patterns changes from

the cubical repetoire to the spherical harmonic series, with its patterns of

concentric shells, and periodic stripes like the lines of longitude and lattitude on a

globe. Any of these spatial patterns can appear in the resonator at any orientation,

while vibrating at a frequency that is characteristic to that waveform whatever the

orientation, and thus the spherical resonator offers a completely rotation-invariant

representation.  

Invariance in recognition implies a many-to-one relation between the basic pattern

and its many possible manifestations. For example a spherical harmonic, such as

the third harmonic of the d-mode resonance shown in Figure 3.12 A,  can appear

at a range of orientations in three dimensions, while being the same essential

pattern. A bank of tuned resonators, like the rank of organ pipes depicted in Figure

3.12 B, would respond to this characteristic pattern independent of its orientation

through a full 360 degree rotation in any of three dimensions. But what about the

top-down influence? If the organ pipe corresponding to this third harmonic pattern

is energized top-down before there is any discernable pattern in the resonator, as

suggested in Figure 3.12 C, which orientation will the pattern choose to appear in

the resonator? If the top-down resonance can create a standing wave at any

orientation, how would it choose one orientation to reify over all the other
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alternatives? The answer to this question turns out to involve one of the most

interesting features of a resonance representation, the ability to perform top-down

priming through an invariance relation. This principle will be explained with a

simple analogy.  

Imagine a pendulum on a string that is free to swing in both x and y dimensions,

but whose support string passes through a small frictionless hole in a horizontal

floor or divider between the pendulum bob and its point of support, as suggested

in Figure 3.12 D. If the pendulum is set to swinging, the fact that it was swinging

could be detected at the support point even if the bob could not be seen from

above the floor, by a periodic variation of string tension due to centrifugal force as

the pendulum swings, although it would be impossible to determine from above

what direction the pendulum was swinging below the floor. The oscillating tension

of the string can be seen as a rotation-invariant signal indicating the swinging of

the pendulum at some orientation, independent of the orientation of that swinging.

Is it possible to amplify this oscillation in the invariant representation above the

dividing floor without knowing its orientation? How can the pendulum be given

periodic pushes to keep it swinging in the direction it is already swinging, without

knowing what that direction is? More generally, is it possible to provide top-down

feedback and amplification across an invariance relation? In this case the answer

is yes, by simple sympathetic resonance. If the pendulum is hanging motionless, it

is impossible to pump it into swinging by gently pulling up and down vertically on

the string’s support point, the pendulum would simply remain vertical as it moves

up and down. However if the pendulum already happens to be swinging even just

a tiny bit in any direction, then synchronized pulling at the support point, timed to

Figure 3.12. A: A third harmonic d-mode spherical harmonic resonance has a
characteristic vibration frequency that is invariant to its orientation, and thus B: a bank of
tuned resonators would serve as a rotation-invariant representation of that pattern. D: If
that third harmonic is stimulated top-down, it will C: attempt to reify the corresponding
standing wave pattern at all orientations simultaneous, producing an unstable
indeterminate pattern, but if the priming is strong enough, it will select one orientation over
the others, by the same principle that E: a pendulum’s swinging can be amplified even if
the orientation of its oscillations is unknown.

A B C D E
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coincide with the periods of increased string tension, will amplify the swinging of

the pendulum at whatever orientation it happens to be occuring, without any

knowledge above the horizontal floor as to which direction of oscillation is being

amplified. In fact, even if the pendulum were initially motionless, vigorous up-and-

down oscillation of the support point would inject random oscillations which could

subsequently be amplified by further synchronized oscillation. This is the same

principle by which an invariant higher-level representation can serve to amplify its

pattern through an invariance relation, amplifying preferentially the one oscillation

orientation that is already the most active, at the expense of all the alternatives.  

This principle will apply in the condition shown in Figure 3.12 C. At first, playing

the third harmonic note top-down in the absence of any coherent pattern in the

resonator, will attempt to activate the third harmonic standing wave at all

orientations simultaneously, as suggested in Figure 3.12 C. If the top-down

priming is weak, the system will remain in this indeterminate state, with a third

harmonic oscillation at many different orientations simultaneously, as a fuzzy

superposition of states. But if the amplitude of the priming is increased sufficiently,

the pattern at some random orientation will happen to be stronger than the others,

and as this occurs, a positive feedback loop with the top-down resonator will

preferentially amplify that one orientation over all the others, a top-down priming

with reification across an invariance relation. Furthermore, after the top-down

priming has established a reified manifestation of its corresponding third harmonic

pattern in the resonator, that pattern will remain free to rotate to any other

orientation as long as the priming continues, because its orientation is not

constrained by the priming, but remains a free variable. This is a very significant

feature of a harmonic resonance representation, inherited directly from the

physical phenomenon of harmonic resonance itself, that captures an essential

aspect of perceptual recognition and reification.  

For example we can easily recognize simple geometrical shapes such as cubes,

rectangular blocks, pyramids, tetrahedra, etc. independent of their orientation; our

recognition of simple forms is rotation invariant. But although our recognition is

rotation invariant, it is not at all “blind” to orientation; we can easily see the

orientation of the recognized object as soon as we recognize its characteristic

form. We both perceive it, and perceive it to be at a particular orientation.

Furthermore, we can easily reify the hidden rear faces of the recognized object,

predicting the exact location and orientation of its hidden faces and vertices based

on its visible portions, and we can even recognize and perceptually complete by
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reification objects which are partially occluded by foreground obstacles, even if the

object is translating and rotating randomly through different orientations while we

view it. This invariance in perceptual recognition, but specificity in perceptual

reification, has been one of the most persistent unsolved riddles of perceptual

function.  

The principle of this invariance can be easily demonstrated using a Chladni plate.

As in the case of a spherical resonator, a standing wave pattern on a circular

Chladni plate can appear at any orientation, and each standing wave pattern will

vibrate at its own characteristic frequency. An audio recording of this resonance,

when played back in the presence of the circular plate, will tend to recreate the

original standing wave pattern back on the plate, but the pattern can appear at any

orientation. If the top-down priming is sufficiently strong, then one orientation will

emerge as the dominant one, and amplify itself at the expense of the alternatives

by positive feedback with the invariant resonance.  

Rotation invariance is a very powerful feature of a harmonic resonance

representation, as it helps to resolve the combinatorial explosion that would arise

if every variation of the pattern (in this case every orientation) required a separate

and distinct pattern template (in this case standing wave) to either detect or

regenerate that pattern. Even more impressive invariances can be achieved by

using a gradient refractive index.  

Gradient Refractive Index

Besides the geometrical shape of a resonator, another factor that influences the

shapes of the standing waves in a resonator is the gradient refractive index

profile, as it is called in optics, a coherent modulation of the speed of wave

propagation through the medium to vary continuously as a gradient across the

resonator. Falstad’s Box Modes applet assumes a uniform speed of wave

propagation, or speed of sound throughout the resonator, as is typical of an

acoustical system. If the resonator is composed of biological tissue, however, this

need not be the case; it is possible to create resonating systems in which the

speed of wave propagation (or refractive index) varies signficantly across the

resonator, according to some regular function, as in the example of gradient

refractive index (GRIN) optics. Figure 3.13 A shows a GRIN lens in the shape of a

cylinder whose refractive index varies continuously as a function of radial distance

from the cylindrical axis, with greater refractive index toward the center, indicated

by the shading. Typically a parabolic or exponential gradient refractive index

profile is used, as shown in Figure 3.13 B. This has the effect of bending light in
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the direction of the greater refractive index, allowing a cylinder of glass with plane

end-faces to behave like a convex lens, bending a parallel beam of light to a focal

point. A reverse gradient with lower refractive index at the center than the

periphery, would behave like a concave lens that makes a parallel beam of light

diverge. A gradient refractive index in a resonator, for example using a GRIN lens

as a lasing cavity, would also distort any standing wave that it sustains. Figure

3.13 C shows a standing wave along a cylindrical resonator whose gradient

refractive index profile varies along the length of the cylinder, with lower refractive

index and thus greater propagation velocity, to the left, increasing in nonlinear

fashion towards the right. The standing waves in that resonator would be distorted

by this change in the propagation velocity in such a way that the shorter waves

towards the right in the figure oscillate back and forth at the same temporal

frequency as the longer waves towards the left, and thus, all the waves oscillate in

perfect synchrony along the length of the resonator dispite their differences in

size. This squashed non-periodic pattern is thus functionally equivalent to a much

longer un-squashed waveform in a uniform resonator with the same number of

peaks and troughs, as suggested in Figure 1.13 D.  

The possibility of imposing a regular distortion on the shape of the standing wave

in a non-uniform resonator opens a unique opportunity to circumvent the

boundary conditions at the boundaries of a resonator, and thus liberate the

resonances within from the strict constraints of the geometry of the resonator. This

in turn offers an opportunity to create resonances that are not strictly constrained

by the geometry of the resonator’s bounding limits. The refractive index of a wave

propagating material is a consequence of a time delay in the propagation. In the

case of light travelling through glass, the time delay is due to the absorption, and

Figure 3.13. A: A gradient refractive index (GRIN) lens whose refractive index varies B: as
a function of distance from its cylindrical axis with a parabolic or exponential gradient
refractive index profile. C: If a cylindrical resonator with a nonlinear GRIN profile is used as
a resonator, the standing waves that it sustains will be correspondingly distorted by the
GRIN, although the resonance will be functionally equivalent to D: an undistorted
resonance in a resonator with a constant, or uniform GRIN profile.

A B C

D
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subsequent re-emission of each photon of light many times as it passes through

the material, effectively increasing the light path length to include a few orbits

around each atomic nucleus that it encounters along its path. This slow-down in

light propagation refracts a beam of light by the same principle that a column of

marching soliers is deflected if it enters obliquely into a region of increased

walking resistance, a ploughed field or low brush, which slows the column on one

side before the other, deflecting its path toward the denser medium. In theory

there is no limit to the magnitude of refractive index, up to an infinite refractive

index, which describes a perfectly opaque material (light goes in but never comes

out). In fact light itself has even been slowed down to bicycle speed in this

manner, by using a Bose-Einstein condensate to delay the light in random

fluctuations back and forth within the condensate before eventual re-emission. In

a biological medium, whether chemical reaction-diffusion, or electrochemical

oscillations, it is perfectly possible to create a system with very large, up to infinite

refractive index using less exotic means than a Bose-Einstein condensate. In a

theoretical model this is easily achieved by simply adding the appropriate time

delay to the wave propagation equation.  

Figure 3.14 A shows a cylindrical resonator with a rather extreme gradient

refractive index profile that is relatively low at the center (high propagation

velocity) but rises to an infinite refractive index at the two ends, or zero

propagation velocity. Actually, it is not necessary for the refractive index to be truly

infinite, it is sufficient to make it just very large, which is tantamount to “practically

infinite” within some temporal window either side of the center. A wave

Figure 3.14. A: A resonator whose GRIN profile reaches infinity at the ends, will sustain
standing waves with an “infinite” number of nodes towards the ends, which is functionally
equivalent to B: a resonance in a uniform resonator of infinite extent, which is a physical
impossibility.

A

B
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propagating from the center outwards towards the ends, would propagate ever

slower as it approached the ends, but never quite get there, (or only after a very

long time) successive wave fronts piling up on each other like traffic slowing for a

traffic jam. It is perfectly possible to set up self-amplifying standing waves in a

resonator with this peculiar property. But since the refractive index is practically

infinite at the ends of the resonator, the resonance is functionally equivalent (to

some approximation) to an infinite resonance in an infinitely long resonator, as

suggested in Figure 3.14 B. The use of a practically infinite refractive index, which

is a physical possibility, allows the construction of something that is functionally

equivalent to an amplified resonance in an infinitely long resonator, with an infinite

number of nodes along its infinite length, something that is physically impossible.

Of course the “trick” here is that there are not really an infinite number of nodes in

the standing wave, there are nodes that get ever smaller and more compressed

towards the ends, but in a real physical system this would only occur to some

smallest scale, beyond which there would be no more vibrational nodes.

Nevertheless, this “trick” has the effect of removing the effect of the abrupt

bounding limits of the resonator, in a pattern that emulates the kinds of

resonances that could emerge in an infinitely long resonator, but expressed in a

finite bounded representation.  

The standing waves in a normal finite length resonator are constrained by the

boundary conditions at the ends. If the ends of a tube are closed, then vibrational

nodes will form at the ends due to reflections back from the closed end. The

waveform in the resonator is phase-locked to its ends. In the functionally infinite

resonator depicted in Figure 3.13, on the other hand, there is no discrete end

point to the resonator, and thus the wave that emerges spontaneously in a self-

amplifying resonance is not constrained to a single phase, but can appear at any

phase. In other words, the wave pattern shown in Figure 3.14 A, which exhibits an

asymmetrical sine function across the center, with negative to the immediate left

of center and positive to the right, could be phase-shifted 90 degrees to a cosine

function, positive across the center and negative to the immediate right and the

left, or it could be shifted to any intermediate phase value, while remaining

balanced in resonance terms. That is, each of those phase-shifted waveforms

would be equally valid or sustainable as standing waves in that resonator, and

thus this resonator has become invariant to the phase of the waveforms that it

sustains. It is a phase-invariant representation of waveforms in that space, in the

sense that a tuned resonator tuned to the frequency of that wave would resonate

to the wave regardless of its phase. This phase invariance also confers a
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frequency invariance to the standing waves that can appear in the tube. In a finite

and bounded resonating cylinder with uniform refractive index profile, the standing

waves that can be sustained are restricted to the frequency of the fundamental,

and its infinite series of higher harmonics. The infinite bounded resonator, on the

other hand, can sustain waveforms of any frequency equally, (within some lower

and higher limits) and thus this resonator is both invariant to frequency and phase

of the waveforms that it can sustain in self-amplified resonance. The resonator

has broken free of the boundary conditions imposed by the discrete ends of the

resonating system. The effect of the gradient refractive index is to insulate the

resonances at the center from the boundary conditions at the ends, in the same

way that a window function, like a hanning window, is used in Fourier filtering

operations in image processing in order to eliminate the “ringing” due to the abrupt

boundaries of the image, allowing a finite sized image to be treated as a finite

sample of an infinite repeating pattern. This principle could be easily

demonstrated by standing wave vibrations in a “gradient refractive index” slinky

that is devised to have progressively increasing mass and stiffness towards one

end of the spring, which is then fixed to a rigid attachment point. Normally, the

waves that travel to an attachment point are reflected back in mirror-fashion from

the abrupt transition of stiffness at the attachment point. In the gradient refractive

index slinky, the transition is no longer abrupt, but continuous, and thus a wave

propagating towards the end is reflected back continuously as it traverses the

region of increasing refractive index, thus distributing the reflection process

throughout a continuous region of the spring, and thus liberating the vibrations of

the spring from the strict constraints of the abrupt boundary. The consequences of

this principle extended into two- or three-dimensional resonances are even more

dramatic.  

The Infinite Bounded Sphere

The concept of a functionally infinite resonator can be extended into two or three

dimensions by creating a circular, or spherical resonator with a gradient refractive

index that goes to infinity at the bounding limits of the resonator. Figure 3.15 A

shows a standing wave resonance in a resonator with this “infinite bounded”

property. This figure can be viewed as either a flat circular disk, like a circular

Chladni plate with a gradient refractive index profile, or as a central great circle

slice through a three-dimensional spherical resonator with a three-dimensional

gradient refractive index profile. In either case, the speed of wave propagation

varies continuously with distance from the center such that it takes equal time for

a wave propagating outward from the center to cross each of the concentric shells
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delimited by the depicted waveform, travelling faster across the rings near the

center, and ever slower towards the periphery, slowing to a complete stop just as it

reaches the outer boundary. This confers an additional “momentum” or functional

inertia to the standing waves out toward the periphery, that allows a thinner

compressed ring of the standing wave toward the periphery to resonate in balance

with a thicker expanded ring nearer the center, as if they were waves of exactly

the same size and shape balanced symmetrically against each other in a uniform

resonator. As in the case of the GRIN resonator depicted in Figure 3.13 E, this

resonator can sustain standing waves of any frequency within a range of

frequencies between some lower and upper limits, and of any phase shift. But the

full circular, or spherical closure of the infinite bounded sphere confers yet another

invariance to this representation, an invariance to the shape of the resonator, a

property that is highly desirable in a perceptual representation. Figure 3.15 B

shows another standing wave resonance that would be sustained in the infinite

bounded resonator, in this case a pattern of parallel sinusoidal waves at some

orientation. Again, the smaller waves toward the periphery remain in dynamic

balance with the larger waves through the center, but there is now a spatial

distortion imposed on the standing waves, due to the redefinition of distance as a

function of wave propagation velocity, that bends the parallel wave fronts into

Figure 3.15. Standing wave resonance patterns viewed in cross-section of an infinite
bounded sphere in which the refractive index varies with distance from the center,
reaching infinite refractive index (zero wave propagation velocity) at the bounding surface
of the sphere. A: Concentric pattern. B: Linear perspective pattern. C: Checkerboard
pattern. D: Hexagonal pattern. E: Higher harmonics on a hexagonal pattern. F: Higher
harmonics on a checkerboard pattern.

A B C

D E F
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graceful arcs that meet at a pair of “vanishing points” in opposite directions across

the resonator. In other words, this standing wave resonates in the same pattern as

a field of straight parallel waves that extend to infinity in all directions, except

expressed in a finite bounded representation. This resonator is now totally

invariant to the shape of the standing waves that it sustains, because they no

longer need to vibrate in balance with respect to the reflective boundaries of the

resonator, but rather, the waves that emerge in this resonator must merely be

balanced with respect to themselves, balancing the positive portions of the wave

pattern against equal and opposite negative portions of the wave, a resonance of

the similarity of the wave to itself, in either simple, or compound hierarchical form,

rather than to the shape of the resonator. This representation now encodes two

completely different kinds of spaces, all in a single representation. One is the

spherical bounded and finite space of the resonator mechanism itself, that has a

finite size, the other is a functionally infinite space (expressed to a finite resolution)

in which distance is defined not by physical distance, but by the time taken to

traverse it at at the speed of wave propagation through the medium. The world

defined by the waves themselves is an undistorted Euclidean world of practically

infinite extent, although with a finite spatial resolution that falls off to zero at the

periphery. It turns out that this infinite bounded world has the same geometrical

distortions as the world of our perceptual experience.  

Figure 3.15 C shows another standing wave that would be sustained in the infinite

bounded resonator, this one composed of two sets of parallel sinusoids oriented at

right angles to each other, creating a checkerboard pattern of waves, that are also

symmetrically balanced against each other, with exactly the same magnitude of

positive and negative values across the pattern of a whole. Figure 3.15 D shows a

hexagonal grid defined by three sets of parallel waves oriented at 120 degrees to

each other, again maintaining a perfect balance of the wave against itself. These

patterns could be sustained at any frequency through a range of frequencies, at

any phase, and at any orientation through the resonator. The infinite bounded

resonator is not confined to waves of sinusoidal form, but it can also resonate to

patterns composed of fundamental wave forms and an orderly series of higher

harmonics, to define patterns of arbitrary complexity. Figure 3.15 E and F show

just two of an infinite number of possible combinations of wave patterns and their

higher harmonics, with the higher harmonics expressed as integer multiples of

some selected fundamental frequency representing the base pattern. Each one of

the infinite array of possible patterns that can be composed of periodic patterns of

sinusoids and their higher harmonics, are the natural modes of resonance of the
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infinite bounded resonator. That is, they express standing waves that would be

sustained by self-amplification in the resonator if that pattern were imposed as an

initial condition. Unlike the resonance of Falstad’s box mode applet, this resonator

is tuned to resonate to any pattern that has the self-similar property of either

symmetry, or periodicity, or both, in some combination.  

If a resonator of this sort is associated with a bank of tuned resonators, as

suggested in Chapter 2 with the analogy of a bank of organ pipes, the tuned

resonators would respond to their characteristic waveforms independent of

rotation and translation of the pattern, and also to some extend invariant to spatial

scale. For example the periodic striped pattern in Figure 3.14 B, oscillates at a

single frequency characteristic of the scale of the waveform because the broad

waves through the center vibrate at exactly the same frequency as the narrower

waves in the periphery. A similar pattern of parallel waves that are either broader

or narrower as they pass through the center, would produce a different

characteristic vibration frequency that is either lower or higher in temporal

frequency respectively. In other words, the temporal frequency represents the

absolute scale of the pattern, even though the scale also varies from the center to

the periphery. This is the property of harmonic resonance that accounts for the

extraordinary invariance in visual perception and recognition to rotation,

translation, and scale, as well as for the distortions of visual perspective, that have

been so resistant to explanation in more conventional neural network terms.  


